RECENT ADVANCES IN HIV PREVENTION & TREATMENT RESEARCH

GITA RAMJEE
DIRECTOR
HIV PREVENTION RESEARCH UNIT
SOUTH AFRICAN MEDICAL RESEARCH COUNCIL
DURBAN, SOUTH AFRICA

7TH EDCTP FORUM
BERLIN, GERMANY
30 June 2014
Far too many people become HIV infected & die from the effects of HIV/AIDS.
MILESTONES IN 30 YEARS OF HIV RESEARCH
(WE HAVE COME A LONG WAY, YET MUCH MORE NEEDS TO BE DONE)

1st Decade (1980-1990)

- HIV biology and pathogenesis
- SIV
- Identification VIH-2
- HIV-1 Diversity
- HIV-1 Sequence
- CD4 Receptor
- HIV-1 Identification

2nd Decade (1990-2000)

- HIV biology and pathogenesis
- ~25 million infections
- Co-receptors
- Origin of HIV
- Recombinants VIH-1
- HIV Reservoirs
- HIV-1 O
- HIV-1 subtypes
- HIV-1 N

3rd Decade (2000-2010)

- HIV biology and pathogenesis
- ~35 million infections
- CD4 Depletion in gut
- HIV controllers
- HIV Restriction factors
- HIV-1 P
- Immune activation
- Microbial Translocation

PREVENTION & TREATMENT MILESTONES

1981: AIDS
1983: African Epidemic

- Therapy & Prevention Research
 - 1984/5: HIV Testing
 - 1988: AZT Therapy
 - 1989: ARV Resistance
 - 1994: HIV Quantification
 - 1996: PMTCT
 - 1996: HAART
 - 2006: Circumcision (Risk Reduction)
 - 2010: ARV as prevention
 - Cure Proof of concept

Ref: Modified from Francoise Barre-Sinoussi, (ASSHH July 2013)
FUNDAMENTAL PRINCIPLES OF INTERVENTIONS FOR PREVENTION & TREATMENT OF SEXUALLY TRANSMITTED HIV

INFECTIOUSNESS (HIV positive)
- Blood viral load
- Genital tract viral load
 - Inflammatory STDs
- Viral clade
- Acute infection

SUSCEPTIBILITY (HIV Negative)
- Genital ulcers
- Inflammatory STI’s
- Cytokine profile
- Lack of circumcision
- Cervical ectopy
- HLA haplotype
- Hormonal contraception?

HIV TRANSMISSION

HIV TREATMENT INTERVENTIONS
- HIV Testing
- Behaviour Change
- STI Treatment

HIV PREVENTION INTERVENTIONS
- HIV Testing
- Behaviour Change
- Safe Sex
- STI Treatment

Ref: Modified from Cohen (ART for Prevention)
HIV PREVENTION
FOUR PREVENTION OPPORTUNITIES

UNEXPOSED
- Behavioral, Structural
- HCT
- Circumcision
- Condoms & Safe Sex

EXPOSED (precoital/coital)
- Vaccines
 - ART PrEP
 - Microbicides

EXPOSED (postcoital)
- Therapeutic Vaccines
- ART PEP

INFECTED
- Treatment of HIV reduce Infectivity
 - e.g. PMTCT, TasP

HIV PREVENTION

HIGHLY ACTIVE COMBINATION OF HIV PREVENTION TOOLS

- VACCINES
- PMTCT
- PrEP
- TasP
- HIV CURE
- MICROBICIDES
- EDUCATION / BEHAVIOUR CHANGE
- CONDOMS
- STI TREATMENT
- COUNSELING & TESTING
- MMC
- DRUG/ALCOHOL TREATMENT
- HARM REDUCTION
HIV PREVENTION (PRECOITAL/COITAL)
MICROBICIDE RESEARCH: 1992 - 2012

CAPRISA 004 (2007-2010)
Tenofovir gel
39% EFFECTIVE

MTN 003 – VOICE (2009-2013)
Daily use
Tenofovir gel & tablet

FACTS 001 (2011-2014)
Tenofovir gel
SA study to confirm CAP 004
ongoing

MTN 020 (2012 – 2015)
Intravaginal
Dapivirine ring
ongoing

1992-2012
10 products in large scale clinical trails

1 proof of concept

Adherence is critical for efficacy

1992 - 2012
N9 sponge (1987-1990)
NIH

COL-1 (1996-2000)

SAVVY (2004-2006)
FHI

ARV BASED PRODUCTS
(prevent establishment of HIV infection)

POLYANIONS
(prevent attachment of virus)

SURFACHTANTS
(disrupt membrane)

Carraguard (2004-2008)

HPTN 035 (2004-2009),
MDP 301 (2005-2009)

CONF 001 (2006-2007)
FHI Cellulose Sulphate

N9 INCREASED RISK

SAFE, NOT EFFECTIVE

©Copyright Prof Gita Ramjee (MRC)
ADDRESSING ADHERENCE: NEW FORMULATION & DELIVERY SYSTEMS

Delivery Systems: Systems Currently in Clinical Trials (Phase I to III)

Vaginal Gels

- Tenofovir
 - FACTS 001
 (Exiting participants, Data end 2014/2015)

Rectal Gels

- Tenofovir
 - CHARM
 - Project Gel
 - MTN 017
 - MTN 013

Silicon Rings

- Dapivirine
 - ASPIRE (MTN 020)
 - Maraviroc + Dapivirine
 - MTN 013/ IPM 026 (Completed)
EVIDENCE FOR PRE-EXPOSURE PROPHYLAXIS (PrEP) EFFICACY WITH ORAL TENOFOVIR-BASED REGIMENS, 2014

<table>
<thead>
<tr>
<th>STUDY</th>
<th>POPULATION</th>
<th>N</th>
<th>EFFICACY (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>iPrEx</td>
<td>Men having sex with men</td>
<td>2499</td>
<td>44% (15%-63%) Daily oral FTC/TDF</td>
</tr>
<tr>
<td>Brazil, Ecuador, Peru, South Africa, Thailand, US</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDF2 Study</td>
<td>Young men & women</td>
<td>1200</td>
<td>62% (21%-83%) Daily oral FTC/TDF</td>
</tr>
<tr>
<td>Botswana</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Partners PrEP Study</td>
<td>Heterosexual couples</td>
<td>4758</td>
<td>67% (44%-81%) Daily oral TDF 75% (55%-87%)</td>
</tr>
<tr>
<td>Kenya, Uganda</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thai IDU Study</td>
<td>IDU; 17 drug treatment centers</td>
<td>2413</td>
<td>49% (10%-72%) Daily oral TDF</td>
</tr>
</tbody>
</table>

Adherence:
In every PrEP trial adherence was imperfect – range (<30%-81%). Correlates of low adherence: younger age, not partnered, stigma, low risk perception, less sex, alcohol use, non-adherence to study visit

Modified from Jared Baeten, PrEP & Treatment as Prevention: Finding the Balance, STI & AIDS World Congress 2013 Vienna, July 2013
Long-acting injectables

- **TMC278LA**: (Janssen/BMGF) NNRTI
- **S/GSK1265744**: (744 LA, ViiV) Integrase inhibitor

Major strength of the injectable approach
- Long half-life-weeks to months
S/GSK744 LONG-ACTING INJECTABLE FORMULATION

- HIV-1 integrase inhibitor
- Developed via joint venture between GSK/Shionogi/ViiV
- Evaluated clinically as an oral formulation
 - Generally safe & well tolerated
 - 30 mg/d, 10 days = 2.6 log median reduction in viral load
- LA formulation evaluated in P1 (Spreen et al, IAC 2012)
 - IM or SC single dose of 100-800 mg
 - No drug related AEs; No grade 3-4 AEs
 - Mean terminal t_{1/2} 21-50 d (Oral 30-40 h)
 - 800 mg IM sustained plasma levels above that required to produce >2.5 log reduction in viral load as monotherapy

Ref: Long Acting Formulation Strategies for HIV Prevention Products: Addressing the Challenges of Adherence? Joe Romano, June 2, 2013, NWJ Group, LLC
TREATMENT AS PREVENTION (TasP)

- Proof of Concept of the impact of ART on HIV transmission: Reduction in MTCT of HIV during pregnancy, delivery, breast feeding when women are on ART

- Numerous observational, community & RCT studies show that a decrease in viral load is associated with significant reduction in HIV transmission (Quinn et al 2000, Attia S et al 2009, Cohen MS et al 2010)

- HIV viral load in the infected person is a key determinant of the risk of HIV transmission
RECENT SUCCESS: HPTN 059- significant reduction in HIV transmission when ART started immediately with CD4 count between 350 & 550 per ul. (Cohen MS, et al. 2011)

BENEFITS:
- Early initiation of ART has clinical benefits- tolerability, CD4 cell recovery & overall prognosis decreases immune reconstitution inflammatory syndrome, impact on HIV & TB morbidity
- Successes dependant on sustained high adherence- poor adherence: treatment failure & drug resistance- numerous personal, societal & structural barriers to high adherence
- Impact on HIV transmission- people on ART, adherent to Rx unlikely to infect sexual partner & reduce MTCT
- Implementation trials in progress- earlier HIV testing & immediate offer of treatment e.g. PopART

RISKS OF TasP & IMPACT ON TREATMENT CASCADE:
Challenges at both individual & health systems level

<table>
<thead>
<tr>
<th>INDIVIDUAL</th>
<th>HEALTH SYSTEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toxicity</td>
<td>Treatment delivery to larger numbers of people – overburden of resources</td>
</tr>
<tr>
<td>Decreased adherence- drug</td>
<td>budgets</td>
</tr>
<tr>
<td>resistance</td>
<td>Programme to expand support for retention, adherence & supply chain,</td>
</tr>
<tr>
<td>Disclosure & stigma</td>
<td>laboratory testing</td>
</tr>
</tbody>
</table>

Targeted operations research critical to address these at all levels

Ref: Granich et al, 2009
PUTTING PrEP & TasP TOGETHER

<table>
<thead>
<tr>
<th>ART FOR HIV PREVENTION</th>
<th>PrEP FOR HIV PREVENTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>96% (HPTN 052, near - perfect adherence)</td>
<td>~90% (When tenofovir detected)</td>
</tr>
</tbody>
</table>

Two incredibly powerful HIV prevention strategies – when used, can prevent HIV

- WHO Guidelines - Recommendations for use in context of demonstration project, July 2012
- CDC Guidelines - Clinical Practice Guidelines, 2014

Ref: Modified from, Jared Baeten, STI & AIDS World Congress 2013, Vienna, July 2013, PrEP & Treatment as Prevention: Finding the Balance
POST EFFICACY PrEP DEMONSTRATION STUDIES

HPTN (NIH):
- **HPTN 066:** PK for intermittent PrEP
 - Will the “intermittent” groups: Have the same coverage of sex events? Need fewer tablets for coverage? Report fewer side effects?
- **HPTN 067:** PK & behavioral study of alternative FTC/TDF dosage schedules including event-driven
 - Harlem, USA (MSM), Bangkok, Thailand (MSM), Cape Town, South Africa (♀)
- **HPTN 073:** Uptake of FTC/TDF by black MSM
 - Willingness
 - Will it be used as prescribed
 - Will client centred care coordination enhance uptake & adherence
- **HPTN 069:** Maraviroc an alternative to FTC/TDF
 - Safety & tolerability in MSM & women

PopART (NIH): Cluster randomised trial- immediate vs. delayed ART

MaxART: Swaziland (Stop AIDS now) - feasibility, acceptability, scalability & clinical outcomes

ANRS 12249 Africa Centre: Impact on HIV incidence at population level

iPrEX OLE: Access & follow-up in MSM
ADVANCES IN HIV TREATMENT RESEARCH
HIV REPLICATION CYCLE: TARGETS FOR ANTIRETROVIRAL THERAPY (ART)

>20 different ARV drugs used in Combination that improves health & prolongs life of HIV infected individuals

Ref: Modified from Carl W. Dieffenbach, The Future of HIV Cure Research & the NIH, 1 July 2013
WHY DO WE NEED LIFELONG ART?
HIV INFECTION PERSISTS ON ART...

For every HIV infected person initiating therapy, 2 individuals are newly infected—challenges with sustainability—HIV infected population is likely to grow overtime

Despite successes in HIV therapy full health & immune status not restored

Co-morbidities still experienced such as CVDs, bone disorders & cognitive impairment

Presence of an inducible HIV-1 latent reservoir during HAART (Chun 1997, J Wong 1997)

Interruption of ARV therapy leads to the re-emergence of viral replication & progression to AIDS

Therefore it is critical that strategies for a safe, affordable & scalable cure for HIV address individual & public health challenges of lifelong ARV therapy

Viral Latency

1. Mechanism that establishes latency
2. Effect of ART on Host immune system & consequences of HIV persistence

Ref: Palmer et al., Proc Natl Acad Sci USA. 2008; 105: 3879-84
Malderelli et al., Plos Pathogens 2007: 3: 484
HIV PERSISTENCE DURING ART

Figure 2 | Mechanisms of HIV persistence during antiretroviral therapy. The left panel illustrates how latent HIV infection can be established in T cell and myeloid cell reservoirs. The primary mechanism is probably infection of activated memory CD4+ T cells. Most of these cells die, but a minority revert to a resting state. The centre panel illustrates the fate of these now resting ‘latently infected’ memory CD4+ T cells. These cells either die slowly, become a source of new infections, persist as long-lived cells or expand through homeostatic mechanisms. The right panel depicts some immune mechanisms that contribute to persistence. These include mechanisms that maintain cells in a resting state (for example, the upregulation of programmed cell death protein 1 (PD1)). Immune dysfunction during therapy probably reduces the efficient clearance of infected cells.
HIV CURE RESEARCH
(ELIMINATE HIV)

HYPOTHESIS:
 Can immediate ART at PHI* lead to enhanced “post-treatment” viral control, or limit the size of HIV reservoir to increase the chance of viral “remission/cure”?

ASSUMPTION:
 The size of the HIV reservoir increases with time after PHI
 Immediate ART following PHI limits viral reservoir feeding

*PHI: Primary HIV infection

Ref:
Hurst et al, CRIO 2014 Abstract 403 LB
POTENTIAL CURES FOR HIV INFECTION

Functional Cure
(Control of viremia without drugs)

Sterilizing Cure
(No detectable infectious virus)

Efficacy endpoints:
- Absence of rebound upon cessation of ARVs
- Elimination of all HIV infected cells

Ref: Modified from Carl W. Dieffenbach, The Future of HIV Cure Research & the NIH, 1 July 2013
EVIDENCE OF FUNCTIONAL CURE

BERLIN PATIENT:
Received stem cells (bone marrow transplant) from a donor with genetic mutation-made patient highly resistant to HIV infection

ANRS47 VISCONTI COHORT:
14 HIV + patients treated approximately 10 weeks PHI for 3 years, 7.5 years of control off treatment (Saez-Cirion et al Plos Pathogen 2013)

MISSISSIPPI BABY:
Born to HIV infected mother - treated with ART therapy within 30 hours of birth remains negative after stopping treatment at 18 months. No detectable virus at 3 years (Persaud D et al NEMJ 2013; 369: 1828-1835)

HIV ELITE CONTROLLERS (<0.3%):
Treatment naïve infected people naturally control HIV infection (undetectable viral load, low level of reservoir - efficient suppressive CD8 responses; restricted infection of their CD4 cells & macrophages; genetic factors) - (Natures Review: Immunology 2012)
“FUNCTIONAL CURE” OF HIV INFECTION

1. Early ARV Treatment of HIV Infection
2. Preservation of Substantial Level of HIV-Specific Immune Response
3. Prolonged Suppression of Detectable Viremia with ARV
 +/− Intensification of ARV Therapy
 +/− HIV-Specific Immunotherapy
4. Continual Attrition of HIV Reservoir
5. Discontinuation of Therapy
6. Prolonged Suppression of Viral Rebound by Preserved and Amplified Anti-HIV Immune Responses

Ref: Carl W. Dieffenbach, The Future of HIV Cure Research & the NIH, 1 July 2013
FUTURE HIV CURE STRATEGIES?
A COMBINED APPROACH…
(IAS WORKING GROUP ON HIV CURE)

Other ongoing or planned studies

1. Very early therapy to prevent Host responses
2. Direct-acting anti-latency drugs
3. Anti-inflammatory drugs
4. Therapeutic vaccination
5. Immune-based therapy
6. Cell therapy

Requires a multidisciplinary, integrated approach – scientists, community, public-private partnerships, interaction between basic & clinical science, data exchange platform

Ref: Modified from Francoise Barre-Sinoussi, ASSHH July 2013)
Paediatric HIV: NIH funded IMPAACT PIII5- 54 HIV infected infants treated 48 hours of birth. ART stopped after 2 years - viral suppression achieved. Babies will be monitored for viral rebound. Primary endpoint- undetectable HIV in plasma 48 weeks post-treatment follow-up 5 years after birth.

Therapeutic Vaccine (European Union): Vaccine tested in 36 HIV positive participants- safe & drop in HIV viral load in some participants- drop is effective when HIV therapy is initiated - reformulation to be tested.

CHERUB: Collaboration on HIV eradication- a UKBRC initiative (HEATHER studies - stopping ART algorithm, River Study- ART plus therapeutic vaccine) – (S.Fidler, pers Comm)

Martin Delaney Collaborations:
- DARE: Immunological mechanisms controlling latency
- Defective HIV: Gene editing & transplantation
- HIV Care: Reactivation of latent HIV gene expression - new & old target

amfAR: Chart the previous location of viral reservoirs
Understand how HIV persists
Record virus in reservoirs
Eliminate virus
ETHICAL CONSIDERATION:
HIV CURE BIOMEDICAL STRATEGIES RAISE MANY QUESTIONS

For most patients in care, living with ART has become a routine part of daily life - will they be willing to stop therapy or change therapy?

New HIV Cure research raises the question of uncertainty management
 o Are there individual benefits for the patients?
 o What are the possible risks for the patients?

Are clinical trials for HIV Cure research acceptable?
 o For which kinds of patients?
 o Which protocols are acceptable?
 o What are the motivations & fears to participate?

IAS Cure Working Group has developed a multidisciplinary research agenda to address these challenges

Ref: Modified Francoise Barre-Sinoussi, (ASSHH July2013)
CONCLUSION:
HIV PREVENTION & TREATMENT

What we now know
- Behavioural, biomedical or structural interventions are needed for prevention & treatment of HIV
- None of the interventions alone are sufficient to impact on the epidemic
- Treatment impacts prevention & vice versa
- Reducing HIV incidence requires a combined & integrated approach of both HIV prevention & treatment
CONCLUSION

HIV CURE IS CRITICAL- FOR PREVENTION & RESTORATION OF HEALTH OF THOSE INFECTED

- Safe, affordable & scalable cure will improve health & quality of life of HIV infected & reduce transmission risk to those not infected

- Recent advances & future research will lead towards a combination of safe, scalable & affordable strategies to eradicate HIV - requires effective partnerships - potential participants, community, ethicists, multidisciplinary group of scientists, public-private partnerships
ACKNOWLEDGMENTS

❖ Carl Dieffenbach, Director Division of AIDS, NIAID, USA

❖ Joe Romano, President, NWJ Group LLC, MTN Consultant, USA

❖ Sarah Fiddler, Senior lecturer & NHS consultant, Imperial college UK

❖ Myron Cohen, Yeargan-Bate Eminent Professor, Medicine, Microbiology & Epidemiology, Director, Institute for Global Health & Infectious Diseases, Associate Vice Chancellor for Global Heath, USA

❖ Jared Baeten, Departments of Global Health, Medicine, & Epidemiology, University of Washington, USA

❖ Sanam Singh & Anitha Guptar, HIV Prevention Research Unit, South African Medical Research Council