Development of a rapid serological screening test for TB (TBRT project)

Carol Holm-Hansen
Norwegian Institute of Public Health
Division of Infectious Disease Control
Department of Bacteriology and Immunology
Oslo, Norway
TBRT objective

To develop a simple and rapid serological screening test for the detection of tuberculosis disease in the developing world.
Sputum microscopy

- Most used method for detection of active TB
- Sputum sample collection is demanding!

Photo: IL Haugen
Serodiagnostic tests for active TB
WHO negative policy recommendation

- First “negative” policy recommendation
 - GRADE process
 - 67 studies
 - 32 low- and middle-income countries
 - TDR evaluation
 - Sensitivity and specificity highly variable
- Commercial serological tests for active TB should not be used for diagnosis
- Provide inconsistent and imprecise findings
- May have adverse impact on patients’ health

http://www.who.int/tb/labatory/policy_statements/en
TBRT results

- > 2,500 serum/saliva samples collected
- Promising combination of Mtb Ag identified
- Cellular expression system
- 1 protein-based prototype ELISA
- Sensitivity 70%, specificity 95%
- ELISA prototype → rapid platform
- Mtb strain characterization
- Patent
Bio-Plex added signals from 5 antigens
Bio-Plex added signal from 9 antigens
Bio-Plex added signals from 5 antigens
Serum IgG 2 antigens
Ethiopian samples
Last 5 samples neg controls

Saliva IgG 2 antigens
Ethiopian samples
Last 5 samples neg controls
Sensitivity

- Clinical diagnostics
- Blood donor screening
- Public health tool

Improve sensitivity

- Additional antigens
- Plant cell system
- Host markers
- TB/HIV coinfection
Sensitivity wrt public health tool

No rapid test
- 110 TB+
- 10 TB+ referred (clinical symptoms)
- 100 TB+ to village
- 100 x 20 new TB infections (2000)

Rapid test 70% sens (100% spec)
- 110 TB+
- 10 TB+ referred (clinical symptoms)
- 70 TB+ referred (reactive test results)
- 30 TB+ to village
- 30 x 20 new TB infections (600)
TBRT consequences

- Reduce diagnostic delay
- Expedite referral & treatment
- Reduce Mtb infectious pool
- Limit Mtb transmission
- Curb TB pandemic
Acknowledgements

Collaborators:

Norwegian Institute of Public Health, Norway; Solomon Yimer, Øistein Ihle, Fredrik Oftung, Gro Ellen Korsvold, Terje Michaelsen, Bjørn Haneberg, Carol Holm-Hansen
University of Oslo, Norway; Gunnar Bjune
University of Bergen, Norway; Hiwa Målen, Tine Søfteland, Lars Haarr, Harald Wiker
Lovisenberg Diaconal Hospital, Norway; Dag Storla
RIVM, the Netherlands; Dick van Soolingen
Muhimbili University of Health and Allied Sciences, Tanzania; Mecky Matee
Amhara Region Health Bureau, Ethiopia; Solomon Yimer
Epidemiological Laboratory (EPI-LAB), TB/HIV Research Unit, Sudan; Asma Elsony
National Institute of Hygiene and Epidemiology, Vietnam; Vu Tan Trao
Jiangsu Provincial Center for Disease Control and Prevention, China; Shao Yan, Weiguo Xu
Stellenbosch University, South Africa; Gerhard Walzl, Novel Chegou, Paul van Helden
University of Cape Town, South Africa; Willem Hanekom
National Institute of Infectious Diseases, Argentina; Viviana Ritacco
University of Buenos Aires; Argentina; Graciela Cragnolini de Casado
Armauer Hansen Research Institute, Ethiopia; Abraham Aseffa, Markos Abebe
deTect Biosciences, USA; Sam Niedbala (Lehigh University), Dan Malamud (New York University)
Vision Biotech, South Africa; Nick Borain

Funding:
Thank you!

TBRT Consortium

Øistein Ihle

Solomon Yimer