Passive case detection in the control of malaria in pregnancy in low transmission areas in Africa; an meta-analysis of observational studies of the association between fever and malaria infection

A.M. van Eijk, J. Hill, F. ter Kuile

Liverpool School of Tropical Medicine, Liverpool, UK
Malaria in pregnancy

• Predominantly asymptomatic in Africa
 – The presence of symptoms depends on
 • acquired immunity
 • malaria transmission intensity

• Prevention strategies
 – Stable, moderate to high transmission areas
 • Intermittent preventive treatment with sulfadoxine-pyrimethamine
 • ITNs
 – Low transmission areas
 • Passive case detection (case-management of symptomatic women)
 • ITNs
Background

• Passive case detection
 – Assumes IPTp not cost-effective
 – Assumes
 • Most women with malaria develop symptoms
 • Asymptomatic infections represent a small proportions of infections
 • Asymptomatic infections not harmful?

• Recent data from Asia shows
 – Asymptomatic infections are more common than anticipated
 – Asymptomatic infections are harmful
 • Associated with maternal anaemia and LBW (although less strongly than with symptomatic infections)
Research questions

Meta-analysis to assess the relationship between fever in pregnant women and malaria transmission intensity

- Are pregnant women with malaria in low prevalence areas more likely to have fever than pregnant women in areas with higher malaria transmission?
- If pregnant women with malaria in low prevalence areas are more likely to present with fever, does this justify passive case detection?
Methods I

• Studies with useful information in Africa identified through the malaria in pregnancy library
 – http://www.update-software.com/Publications/Malaria/
 – Minimal sample size of 10

• Data extracted
 – Limited to pregnancy, not delivery
 – Prevalence of fever (history of fever, documented fever)
 – Prevalence of malaria (by blood smear)
 – Crosstab fever-malaria if available
Methods II

- Studies matched with malaria transmission intensity indicator for location obtained from the Malaria Atlas Project (MAP: Wellcome Trust/KEMRI, Nairobi, Kenya)
 - Models from surveys in children aged 2-10 years
 - Locations divided into:
 - Low malaria intensity: Mean *Plasmodium falciparum* prevalence (*Pfpr*) among children 2-10 years of age < 5%
 - Medium intensity: *Pfpr* 5-39%
 - High intensity: *Pfpr >39%*

- Data evaluated using SPSS and random effects model (Comprehensive meta-analysis: http://www.meta-analysis.com/)
Studies with information on fever in pregnancy

• Largest “sample size” for documented fever:
 – 45 entries from 25 studies with indicator of transmission intensity
 – Countries: 16
 • (Benin, Burkina Faso, CAR, Ghana, Kenya, Madagascar, Malawi, Mali, Mauritania, Mozambique, Nigeria, Senegal, Somalia, Sudan, Tanzania, Zambia)

– Recruitment
 • ANC 22
 • Community 22
 • Other 1 (study clinic after identification in community)

– Documented fever definition:
 • 40 used 37.4 or 37.5 degrees Celsius or more
Meta-analysis prevalence documented fever, fever in the past week and parasitemia by malaria transmission intensity

Fever and MIP

- Documented fever: 5.3, 2.2, 3.3
- History of fever (past week): 7.9, 24.9
- Parasitemia: 3.5, 19.1, 38.8

No of studies: 14, 16, 15

P = 0.183
P = 0.04
P < 0.001
Risk ratio documented fever in parasitemic vs. non-parasitemic women

<table>
<thead>
<tr>
<th>Study name</th>
<th>malaria</th>
<th>No malaria</th>
<th>Risk ratio</th>
<th>Risk ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falade 2008</td>
<td>17 / 155</td>
<td>101 / 1690</td>
<td>1.84</td>
<td></td>
</tr>
<tr>
<td>Kayentao 2005</td>
<td>2 / 17</td>
<td>5 / 178</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>Van Eijk 2007_b</td>
<td>2 / 77</td>
<td>3 / 703</td>
<td>6.09</td>
<td></td>
</tr>
<tr>
<td>Huynh 2011</td>
<td>13 / 163</td>
<td>44 / 818</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>Ouma 2007</td>
<td>1 / 122</td>
<td>2 / 560</td>
<td>2.30</td>
<td></td>
</tr>
<tr>
<td>Van Eijk 2007_a</td>
<td>17 / 435</td>
<td>29 / 1853</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>Mockenhaupt 2000</td>
<td>41 / 172</td>
<td>38 / 358</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>96 / 1180</td>
<td>226 / 6363</td>
<td>2.14</td>
<td></td>
</tr>
<tr>
<td>McElroy 1999_d</td>
<td>3 / 126</td>
<td>2 / 145</td>
<td>1.73</td>
<td></td>
</tr>
<tr>
<td>McElroy 1999_b</td>
<td>3 / 122</td>
<td>2 / 179</td>
<td>2.20</td>
<td></td>
</tr>
<tr>
<td>McElroy 1999_a</td>
<td>5 / 135</td>
<td>11 / 185</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 / 383</td>
<td>15 / 509</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>Overall model:</td>
<td>107 / 1563</td>
<td>241 / 6872</td>
<td>2.00</td>
<td></td>
</tr>
</tbody>
</table>

Medium malaria transmission

Summary RR 2.14 (1.68-2.71)

High malaria transmission

Summary RR 0.99 (0.44-1.19)

Overall model:

\[P = 0.07, \; I^2 = 78\% \]
RR history of fever in past 1 to 2 weeks in parasitemic vs. non-parasitemic women

<table>
<thead>
<tr>
<th>Study name</th>
<th>Fever / Total Malaria</th>
<th>No malaria</th>
<th>Risk ratio</th>
<th>Risk ratio and 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newman 2003_a</td>
<td>7 / 13</td>
<td>29 / 700</td>
<td>13.00</td>
<td></td>
</tr>
<tr>
<td>Newman 2003_b</td>
<td>5 / 26</td>
<td>37 / 233</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>Ndiaye 2004</td>
<td>1 / 19</td>
<td>5 / 187</td>
<td>1.97</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 / 58</td>
<td>71 / 1120</td>
<td>4.99</td>
<td></td>
</tr>
<tr>
<td>Kayentao</td>
<td>4 / 17</td>
<td>41 / 176</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Van Eijk 2007_b</td>
<td>15 / 78</td>
<td>114 / 704</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>Ouma 2007</td>
<td>63 / 123</td>
<td>226 / 562</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>Van Eijk 2007_a</td>
<td>118 / 436</td>
<td>356 / 1861</td>
<td>1.41</td>
<td></td>
</tr>
<tr>
<td>Rodriguez 1997</td>
<td>31 / 68</td>
<td>54 / 139</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>Nnaji 2006</td>
<td>174 / 333</td>
<td>42 / 87</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td></td>
<td>405 / 1055</td>
<td>833 / 3529</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>Sirima 2003</td>
<td>25 / 174</td>
<td>42 / 423</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>Nkhoma 2009</td>
<td>60 / 476</td>
<td>118 / 1020</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>McElroy 1999_b</td>
<td>39 / 122</td>
<td>53 / 179</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>McElroy 1999_a</td>
<td>52 / 135</td>
<td>73 / 185</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>Steketee 1987</td>
<td>54 / 94</td>
<td>63 / 111</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>McElroy 1999_d</td>
<td>43 / 126</td>
<td>57 / 145</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>McElroy 1999_c</td>
<td>30 / 78</td>
<td>32 / 84</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td></td>
<td>303 / 1205</td>
<td>438 / 2147</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>Overall model:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(P < 0.001, I^2 = 79\% \)
So in Africa.....

• Pregnant women in low transmission areas were ≈5 times more likely to report a history of fever when parasitaemic than women in medium and high transmission areas

• Is screening febrile women for malaria a useful strategy to identify women with malaria in low malaria transmission areas?

• Depends on the fraction of infected women that develop fever
Using history of fever between 1 and 2 weeks for case management

• Summary estimates by transmission area for:
 – Prevalence of history of fever (1 – 2 weeks)
 – Malaria among women with fever (1 – 2 weeks)
 – Malaria among women without fever (1 – 2 weeks)

• Applied to a model with 100 pregnant women
Case management for a history of fever (1 – 2 weeks)

Malaria transmission

Low ($Pfpr <5$) (summary estimates based on 3 studies)

- 100 pregnant women
- 7 fever
- 93 no fever
- 16% malaria = 1
- 5% malaria = 4
- Case management detects 20% (1/5)

Medium ($Pfpr 5-39$) (summary estimates based on 6 studies)

- 100 pregnant women
- 23 fever
- 77 no fever
- 22% malaria = 5
- 15% malaria = 12
- Case management detects 29% (5/17)

High ($Pfpr >39$) (summary estimates based on 7 studies)

- 100 pregnant women
- 30 fever
- 70 no fever
- 41% malaria = 12
- 40% malaria = 28
- Case management detects 30% (12/40)

(Assuming microscopy detects 100%)
Comments

- Limited number of studies
- Assuming that malaria test had 100% sensitivity
- Assuming that malaria indicators among children are reliable in categorization of malaria transmission areas
 - Using Newman 2003 a only: 50% cases detected
- Studies in low prevalence areas may be less likely to have workable malaria or fever prevalence (large sample sizes needed)
- Combinations of complaints may be better in detecting malaria in low prevalence areas
 - Documented and history of fever
 - Other complaints such as headache etc
Conclusion

• In low transmission areas pregnant women were 5 times more likely to have a history of fever when parasitaemic compared to other areas

• Passive case detection may only detect ≈ 20-50% of women with active infections in low transmission areas

• Cost-effectiveness of alternative strategies could be considered
 – Intermittent screening of all pregnant women?
 – Intermittent preventive therapy?
Acknowledgements

• Malaria Atlas Project
 – Bob Snow
 - Margaret Nagasa, Family-tenderly together, 2003

• All the authors who took the effort to publish in detail
 - Margaret Nagasa, Family-tenderly together, 2003